
UniveRsitÀ degli studi di ToRino
Scuola di Scienze della Natura

Dipartmento di Mathematica ”Giuseppe Peano”
Laurea Magistrale in Stochastics and Data Science

Tesi di Laurea Magistrale

Reinforcement Learning

Theory and Implementation in a Custom Environment

Relatore:
Prof. Roberto Esposito

Corelatore:
Dr. Mirko Polato Candidato:

Vasileios Valatsos

Anno Accademico 2023/2024

[…] καὶ δὴ τὸ μέγιστον,
τοὺς ἐκεῖ ἐξετάζοντα καὶ ἐρευνῶντα ὥσπερ τοὺς ἐνταῦθα διάγειν,

τίς αὐτῶν σοφός ἐστιν καὶ τίς οἴεται μέν,
ἔστιν δ᾽ οὔ.

∼ Πλάτων, Ἀπολογία Σωκράτους, (41b)| Plato, Apology of Socrates, (41b)

To Romanos

ii

Acknowledgements

I would like to thank my friends in Torino, and all the people that made my
studies and time in this city worth it. Although a full list of all the people is too
large to fit in such a small space, I have to make some special mentions, in alphabet-
ical order so as to not come into the difficult position on deciding in a non-random
ordering. These special mentions are Amandeep, Andrea, Anna, Filippo, Lorentz,
Luca, Sebastiano. Such is human nature, that others might not feel like we have
known each other enough, but be it as it may, everyone included has still offered
me pleasant and memorable experiences and helped me decompress during these
arduous years.

Next, I want to thank all of my friends outside, who put up with my shenani-
gans and painfully long discussions into the niche ideas that this thesis initiated. I
would especially like to thank Apostolos, Aristotelis, Dimitris, Giannis, Lysandros,
Orestes, Socratis, and Stathis from Greece, and Erik, Eliza, Ghita, Jake, Leonardo,
Linnea, Matthew, Nika, and the rest of the NHAE group from outside Greece. You
all were there for me also, although digitally.

I would also like to thank Konstantina, for her unwavering support, her belief
in me when I doubted myself, and for her outstanding capacity to encourage all of
my shenanigans throughout.

Penultimately, I would like to thank each and every one of my family, who
lifted me up when I was down, who helped me immensely, and who’s constant
support made the long days more bearable, and whose, in my opinion unsubstan-
tiated, belief in me has been beyond invaluable.

Finally, and most importantly, I would like to thank Nara. Nara has uncondi-
tionally loved me, has been there for me, and has supported me mentally through
the darkest periods. You will never comprehend how much you have supported
me, nor would you care if you could.

Figure 1: Nara, my beloved

Abstract

Reinforcement Learning (RL) is a subcategory of Machine Learning that consis-
tently surpasses human performance and demonstrates superhuman understand-
ing in various environments and datasets. Its applications span from master-
ing games like Go and Chess to optimizing real-world operations in robotics, fi-
nance, and healthcare. The adaptability and efficiency of RL algorithms in dynamic
and complex scenarios highlight their transformative potential across multiple do-
mains.

In this thesis, we present some core concepts of Reinforcement Learning.

First, we introduce the mathematical foundation of Reinforcement Learning
(RL) through Markov Decision Processes (MDPs), which provide a formal frame-
work for modeling decision-making problems where outcomes are partly random
and partly under the control of a decision-maker, involving state transitions influ-
enced by actions. Then, we give an overview of the two main branches of Rein-
forcement Learning: value-based methods, which focus on estimating the value of
states or state-action pairs, and policy-based methods, which directly optimize the
policy that dictates the agent’s actions.

We focus on Proximal Policy Optimization (PPO), which is the de facto baseline
algorithm in modern RL literature due to its robustness and ease of implementa-
tion, and discuss its potential advantages, such as improved sample efficiency and
stability, as well as its disadvantages, including sensitivity to hyper-parameters
and computational overhead. We emphasize the importance of fine-tuning PPO to
achieve optimal performance.

We demonstrate the application of these concepts within Pneuma, a custom-
made environment specifically designed for this thesis. Pneuma aims to become
a research base for independent Multi-Agent Reinforcement Learning (MARL),
where multiple agents learn and interact within the same environment. We outline
the requirements for such environments to support MARL effectively and detail
the modifications we made to the baseline PPO method, as presented by OpenAI,
to facilitate agent convergence for a single-agent level.

Finally, we discuss the potential for future enhancements to the Pneuma envi-
ronment to increase its complexity and realism, aiming to create a more RPG-like
setting, optimal for training agents in complex, multi-objective, and multi-step
tasks.

Contents

1 Introduction 1

2 Mathematical Background 3
2.1 Markov Decision Processes . 3

3 Value Based Methods 5
3.1 Q-Learning . 6

3.1.1 Q-Table . 6
3.1.2 Temporal Difference . 7
3.1.3 The Bellman Equation . 7
3.1.4 Parameterisation . 7

3.2 Deep Q-Network . 8
3.2.1 Experience Replay . 8
3.2.2 Target Network . 9

3.3 Double Deep Q-Network . 9
3.3.1 Double Q-Learning . 10
3.3.2 Double Deep Q-Network 10

4 Policy Gradient Methods 11
4.1 Policy Gradient Theorem . 12
4.2 Actor-Critic Methods . 13
4.3 Trust Region Policy Optimization 14
4.4 Proximal Policy Optimization . 15

4.4.1 Objective Function . 15
4.4.2 Generalised Advantage Estimation 16
4.4.3 Entropy Regularization . 16

5 PneumaRL – Custom Environment 17
5.1 State Space . 18
5.2 Agent Actions . 19
5.3 Reward Structure and Agent Goals 19
5.4 Customisation . 20
5.5 Agent Goals . 20

5.5.1 Level generation . 21
5.5.2 Character stats . 21

6 Implementing PPO in PneumaRL 22
6.1 Optimizer Configuration . 24

6.1.1 Stochastic Gradient Descent 24
6.1.2 Adaptive Optimizers . 25
6.1.3 Adam Optimizer . 25

6.2 Activation Function . 27
6.3 Hyperparameters . 27

iii

CHAPTER 0. SECTION CONTENTS

7 Further Discussion 31

Bibliography 32

iv

1 | Introduction

Reinforcement Learning (RL) is an important sub-field of Machine Learning,
which focuses on the interaction between agents and the environments, with the
objective of maximising cumulative rewards. RL intersects with many different
branches of scientific research, such as optimisation, game theory, and control
theory. This potential for a variety of applications, underpins the significance of
RL in many different fields, from solving complex games, to optimising processes
in real world scenarios, such as robotics, economics, and healthcare.

As a field, it includes many different models and approaches and is known
specifically for it’s capacity for efficient and optimal decision making. This in-
volves agents, which learn optimal behaviours in a set environment by trial and
error, which have been observed to outperform humans in given tasks and who
display a deep understanding of the underlying environments and datasets. A crit-
ical framework within RL is that of Markov Decision Processes (MDPs), in which
outcomes are partially random, and partially under the control of an agent who
acts as a decision maker. Such MDPs are defined by a set of states, a set of actions,
transition probabilities, and a reward function, with the goal being to discover a
policy that maximizes the expected cumulative future rewards.

Notable examples of superhuman performance by RL algorithms include the
famous AlphaZero[1] and AlphaZeroGo[2] which mastered the games of chess
and go respectively. Both these games involve both tactical and strategic decision
making, which showcases the capacity of RL algorithms to solve complex, dy-
namic problems, and adapt to incoming information accordingly. This behaviour,
also lends itself to problems such as, but not limited to, autonomous driving, fi-
nancial trading, and personalized healthcare treatment planning.

The most prominent RL algorithm currently is Proximal Policy Optimization
(PPO), which is widely used due to it’s robustness and ease of implementation.
Developed by OpenAI in 2017, it’s recognized for its capacity to strike a balance
between sample efficiency and computational simplicity, which is achieved by en-
suring that policy updates are constrained within a trust region, thus enhancing
training stability and performance over long time horizons[3].

PPO operates within the paradigm of policy gradient methods, which directly
optimize the policy that dictates the agent’s actions. Unlike value-based meth-
ods that estimate the value of states or state-action pairs, policy gradient methods
focus on optimizing the policy itself, leading to more efficient learning in high-
dimensional action spaces. PPO improves upon earlier methods like Trust Region
Policy Optimization (TRPO)[4] by introducing a clipped surrogate objective func-
tion, which ensures that the updated policy does not deviate significantly from
the current policy. This innovation mitigates the risk of large, destabilizing policy
updates, making PPO a preferred choice for various RL applications.

1

CHAPTER 1. SECTION

The structure of the thesis is as follows. First we present a brief introduction
into the mathematical context of Markov Decision Process (MDPs), and then we
move on into value based methods, which serve as the introduction to RL, and pro-
vide context for policy based methods; in the chapter concerning policy gradient
methods, we introduce Actor-Critic models which make use of a hybrid approach,
where the actor is the decision maker and makes use of a policy network, while
the critic calculates the advantage using a value estimation method. In order to
introduce some basic structures and ideas relevant to RL in general, we focus on
Q-Learning, and it’s extensions, namely DQN, and DDQN. Next, we delve into the
specifics of policy gradient methods, and more specifically of PPO and its applica-
tion within a custom-designed environment named Pneuma.

Pneuma was created as part of this thesis and serves as an environment to ex-
periment with different algorithms and methods, and to later include the capacity
for independent Multi-Agent Reinforcement Learning (MARL). The environment
supports multiple agents learning and interacting within the same space, providing
a robust platform for exploring complex RL scenarios. We detail the environment,
its features, as well as its capacity for customization. Then we describe the imple-
mentation of training , and the modifications that we made to the baseline PPO
method to facilitate agent convergence at a single-agent level.

Finally, we discuss potential future enhancements to the Pneuma environment.
The aim is to create a more RPG-like setting, optimal for training agents in com-
plex, multi-objective, and multi-step tasks. These enhancements are expected to
further validate the robustness and adaptability of advanced RL algorithms in dy-
namic and multifaceted scenarios.

Through the above, this thesis aims to contribute to the ongoing research on
Reinforcement Learning, particularly in the context of multi-agent and multi-objective
environment design.

2

2 | Mathematical Background

In order to explain the ideas and processes of reinforcement learning, as well
as those of the relevant algorithms that we later present, we must first discuss
the underlying mathematical background. This chapter serves as a brief overview
of the formalism of Markov Decision Processes; discrete-time stochastic control
processes which are used to model decision making under partial randomness,
and where an agent is able to partially influence the result by making decisions
and taking actions relevant to the current state.

2.1 || Markov Decision Processes
A Markov Decision Process (MDP) can be defined as

Definition 1 A MDP is a tuple (S,A,P, r, γ) where

• S is the state space,

• A is the action space,

• P is the transition probability function

P(s′|s, a) : S ×A× S → [0, 1]

• r is the reward function
r : S ×A → R

• γ is the discount factor
γ ∈ [0, 1)

For a given MDP, given the state st for time step t, the agent picks an action
a ∈ A, according to the policy π, which maps the state space to the action space

π : S 7→ A

So that it reaches the new state st+1 = s′ and receives the reward Rt+1 =
r(st, at). The goal of the agent is to maximize the reward over and arbitrary
amount of time. More formally, the goal is the maximization of the expected sum
of future rewards, over the trajectories Pπ generated by the policy π as

qπ(s, a) :=
∑
t

E(st,at)

[
γtr(st, at)

]
, ∀(s, a) ∈ S ×A (2.1)

where the use of the discount factor γ ensures that the sum remains finite given
infinite time. The policy that generates the maximum is written as π∗.

3

CHAPTER 2. SECTION 2.1. MARKOV DECISION PROCESSES

To showcase the above, consider a simple MDP with 3 states, s1, s2, s3, shown
below

s3s2

s1

R=-0.5

R=-1 R=-1

R=1

R=1

Figure 2.1: A simple MDP with three states.

which could be a simple representation of an arbitrarily large amount of tasks,
which include a starting point and an objective to accomplish before reaching the
end point, for example a mailman who has to start from the post office s1 and
deliver letters s2 before arriving at his house after work (s3), rather than going
straight at home, which would get him fired.

Given this configuration, we can use Equation 2.1 to easily see that the optimal
routing is

s1 → s2 → s3

even though a smaller amount of state transitions is required to reach s3 directly
from s1.

4

3 | Value Based Methods

In this chapter we delve into value based methods. In the next chapter, which
concerns policy gradient methods, we focus on Actor-Critic methods, which are
split into an actor, which is a policy based network, and a critic, which is a value
based network. To fully understand Actor Critic models then, which are a combi-
nation of a value based and a policy based network, it is crucial to first grasp the
fundamentals of value based methods.

Value based methods in Reinforcement Learning focus on the value estimates
of states, or rather state-action pairs, for the update of the decision making process,
with their primary goal being the determination of the best policy by estimating
the potential future rewards for different state-action pairs.

In these types of methods, the agent maintains a value function, which pre-
scribes a value to each state-action pair, which represents the expected sum of
rewards that the agent can achieve, starting from this state and following a given
policy.

The value function we will concern ourselves with is the action value function

Q(s, a)

which contains the expected return for state s, given action a, following policy π.

In this context, the Bellman equation, first used in the fields of dynamic pro-
gramming and control theory, plays a pivotal role in the definition of the value
function, since it expresses the relationship between the value of a given state-
action pair, and the values of future states, including both immediate and dis-
counted future rewards.

Value based methods make use of the aforementioned value function in order
to produce optimal policies. The most common approach is to make use of Tempo-
ral Difference[5], which updates the value approximations based on the difference
of the expected and actual rewards.

In this way, via continuously updating the value functions through exploration
and exploitation, value based methods allow the agent to learn optimal policies,
such that they can maximize cumulative rewards over time.

In the following sections, we will expand on these concepts, using Q-Learning
as an example, which is one of the most studied value based algorithms, as well as
its extensions.

5

CHAPTER 3. SECTION 3.1. Q-LEARNING

3.1 || Q-Learning
Q-Learning was first introduced by Wilkins[6] and is an algorithm that is able

to find an optimal policy for any finite MDP, by maximizing the expected total
reward over a collection of successful steps. The most notable feature being that,
given infinite time, the algorithm is always able to approximate the optimal policy
π∗.

The aim of the agent is to interact with the environment by picking actions in
such a way that it maximizes future rewards. As we saw in Chapter 2, we assume
that in each time step, the discount factor γ acts on the reward (Eq. 2.1) and so we
define the future discounted reward as

Rt :=
T∑

t′=t

γt′−trt′ (3.1)

where T is the final time step of the episode.

As a model-free reinforcement learning algorithm, it does not depend on a
specific transition probability distribution or a reward function in order to reach
the desired result, nor does it create an estimate of the environment. Rather, the
environment, the transition probability distribution and the reward function are
collectively considered as the model. This means that the algorithm has no prior
knowledge of the data set, and thus has to explore it, finding areas in the data set
with high rewards.

The way that traditional Q-Learning works is by relying on a set of values in a
table, like a map, which is called the Q-table.

Q-Table
The Q-table is represented as a table of N + 1 dimensions, with N being the di-
mensions of the environment and the N + 1 representing the dimensions of the
environment plus the dimensions of the action space.

Each Q-value inside of a Q-table represents the quality of a specific state-action
pair (st, at) and contains information regarding the estimation of future rewards
for said pair. An optimal Q-table allows the agent to make the optimal actions,
meaning that the Q-table acts as a representation of the current policy for acting
in the environment.

Since on every action the state changes, we need to find a way to calculate the
change of the Q-value for that state-action pair, based on the Q-value of the re-
sulting state, which is itself determined by the reward of the current state, as well
as the expectation of future rewards.

6

CHAPTER 3. SECTION 3.1. Q-LEARNING

Temporal Difference
To achieve this we use a technique called Temporal Difference (TD), first used
by Sutton[5], which in essence is the reward received for the action taken in the
previous state, plus the maximum Q-value in the current state, weighted by the
discount factor, minus the Q-value of the action of the previous state

TD(st, at) = rt + γ ·max
a

(Q(st+1, at+1))−Q(st, at) (3.2)

where st is the previous state, rt is the reward in the previous state, γ is the dis-
count factor, and st+1 is the new state. In this case, the discount factor γ ∈ (0, 1)
helps determine the importance of future rewards, with small γ implying short-
sighted greedy behavior, and big values of γ meaning focusing more on long term
reward goals.

The Bellman Equation
Using Eq.(3.2) and combining it with Bellman’s equation, Wilkins [6] derived a
rule to update the Q-value for the state-action pair chosen by the agent

Qnew(st, at) = Qold(st, at) + α · TD(st, at) (3.3)

where α ∈ (0, 1) is the learning rate of the algorithm, and it represents the weight
the TD has on the new value, with a learning rate close to 0 implying that the algo-
rithm is mostly exploiting prior knowledge, and a learning rate close to 1 implying
that the algorithm is mostly ignoring known information in favor of exploration.
For deterministic environments, the ideal value is α = 1 since this way the agent
has the possibility to explore the entire space.

Parameterisation
Since most of the problems tackled by Q-Learning are too big for an agent to ex-
plore and learn all state-action pairs of, but also because the above method doesn’t
generalize the model due to each sequence having a discrete action-value function,
the agent can instead learn a parameterized value function Q(s, a | ϑt), so instead
of Eq(3.3) we get

ϑt+1 = ϑt + α · (V (t)−Q(st, a | ϑt))∇ϑtQ(st, a | ϑt) (3.4)

where
V (t) = rt + γ ·max

a
[Q(st+1, at+1 | ϑt−1)] (3.5)

which acts like stochastic gradient descent, updating the Q-Value towards V (t).

Initially the function approximators used were linear; this was before the ad-
vent of non-linear methods such as neural networks.

7

CHAPTER 3. SECTION 3.2. DEEP Q-NETWORK

3.2 || Deep Q-Network
A Q-Network translates the idea of Q-tables to neural networks. A Q-Network

is a multilayered neural network which, for a given state s, generates an action
vector Q(s, ·, ϑ), where ϑ are the weights of the network.

Such a network can be trained by minimizing a sequence of loss functions

Li(ϑi) = E(s,a) [(Vi(t)−Q(st, at | ϑi))] (3.6)

and like in the original Q-Learning, we update the Q-value with respect to

Vi(t) = rt + γ max
α

(Q(st+1, at+1 | ϑi−1)) (3.7)

as seen in Eq.(3.5), while the gradient of the loss function is

∇ϑi
Li(ϑi) = E(st,at | st+1) [(Vi(t)−Q(st, at | ϑi))∇ϑi

Q(st, at | ϑi)] (3.8)

Obviously it is preffered to use stochastic gradient descent, since calculating
Eq.(3.8) is almost always too computationally expensive.

As before, this algorithm is model free and off-policy, so it learns the greedy
strategy a = maxa Q(s, a | ϑ), while following a transition propability function
which allows it to explore the entire state space.

Experience Replay
Mnih et al.[7] used a Q-Network with experience replay[8], to create the Deep
Q-Network(DQN) method, with the goal of reaching human-level gameplay in the
Atari 2600 system. In contrast to previous online methods, such as TD-Gammon[9],
when we use experience replay we cache the experiences of the agent at each time
step

et = (st, at, rt, st+1)

and create an experience set D := (e1, e2, ...) which behaves like a memory for
the agent.

During training, we generate mini-batches from parts of the memory, uni-
formly sampled from the experience set. Afterwords, the agent picks an action
using the ϵ−greedy algorithm, as we see in Algorithm 1.

This approach has several advantages over traditional online Q-Learning. First
of all, each step is used an arbitrarily large amount of times, since the experience
set is uniformly sampled, which provides better memory efficiency. Secondly, due
to the fact that learning using sequential steps carries strong correlations, the ran-
domization of the samples through experience replay which breaks the correlation,
significantly lowers variance. Last but not least, during on-policy training, the cur-
rent parameters define the sample on which they are trained on.

8

CHAPTER 3. SECTION 3.3. DOUBLE DEEP Q-NETWORK

Algorithm 1 Deep Q-Network (Experience Replay)
Initialize memory
Initialize neural network with random weights
for episode = 1, . . . , n do

for time_step = 1, . . . , T do
Generate action using ϵ-greedy
Get st+1 given the state-action pair (st, at)
Observe reward rt
Store into memory et
Sample random minibatch of ej from D = (e1, . . . , em)
if sj is a terminal state then

Vi(j) = rj
else

Vi(j) = rj + γ maxαj
(Q(sj+1, aj+1 | ϑ))

end if
Gradient descent using Eq(3.8)

end for
end for

As an example, if the best action is to move to the left, then the training will
have a disproportionately large amount of samples with this action, which leads
to feedback loops during which the parameters get stuck in bad local optima, or
even diverge. By making use of experience replay, we average out the transition
probability distribution over the previous states which reduces oscillations or di-
vergence.

Target Network
In 2015, Mnih et al.[10] expanded upon the idea of DQNs with a second network,
called the target network, whose parameters ϑ−

i are updated every τ time steps,
and are constant during updates of the online network. This leads to training which
is more robust[10]; under normal circumstances an update that increases Q(st, at)
also increases Q(st+1, a) for all a and therefore affects Vi(t), leading to oscillations
or divergences of the policy. This means that by adding the time difference, dur-
ing which an update is made to Q, and the time the update affects Vi(t), we can
decrease this possibility.

3.3 || Double Deep Q-Network
Although Q-Learning and Deep Q-Networks appear to converge to the cor-

rect values and learn good policies in sequential decision making problems, it
is a known fact that sometimes they can overestimate action-values. It is also
known that they seem to prefer the overestimated values over the underestimated
ones[11].

This partially happens because the max operator is using the same values to

9

CHAPTER 3. SECTION 3.3. DOUBLE DEEP Q-NETWORK

choose an action as well as to rate it. While this makes intuitive sense, it causes
the agent to overestimate and then to prefer to pick these overestimated actions,
which leads to overly optimistic estimations of the values.

Double Q-Learning
For this reason, Hasselt[11] proposed the separation of the value function, using
two sets of parameters ϑ and ϑ′. During each update, one of the two sets is used
for the calculation of the ϵ-greedy policy and the other one for the computation of
the evaluation.

Rewriting Eq.(3.5) for clarity, we have

V Q(t) = rt + γ ·Q (st, at, argmax[Q(st, a | ϑt−1)] | ϑt−1)

while in Double Q-Learning we get

V DQL(t) = rt + γ ·Q
(
st, at, argmax[Q(st, a | ϑt−1)] | ϑ′

t−1

)
(3.9)

so now we use the online parameters ϑ to approximate the policy and the offline
parameters for the evaluation.

This works because, although at first the issue of overestimation was attributed
to inflexibility of the function approximation, or to noise, Hasselt et al.[12] showed
that the problem actually occurred due to the imprecision of the action-values, re-
gardless of the source. At the same time, they showed that the overestimations are
extremely common and that they negatively effected training[12], which was not
known at the time.

Double Deep Q-Network
In order to reduce the overestimations, Hasselt et al.[12] suggested merging the
concepts of Double Q-Learning with Deep Q-Networks equipped with an online
and a target network. Even though the target network isn’t completely indepen-
dent of the online network[10] as is the case of Double Q-Learning, its weights are
easily accessible and usable as the second set of parameters to evaluate the quality
of an action.

So then, in accordance with Eq.(3.9) we have

V (t) = rt + γ ·Q(st, argmax [Q(st, a | ϑt)] | ϑ−
t) (3.10)

where ϑ− are the weights of the target network used in Deep Q-Networks.

10

4 | Policy Gradient Methods

Up until now, we have seen value based methods, which rely on estimates of
Q-values, and which use Q-tables in which the estimated Q(s, a) are stored inde-
pendently. These algorithms have difficulties handling complex tasks, when the
number of states is large, and for this reason we use function approximators, which
maintain a function, who’s shape we modify during the learning process so that it
would estimate the Q-values as accurately as possible.

Recall that using a Q-table the action is given by

a = arg max
a

Q(s, a) (4.1)

while for function approximators we have

a = arg max
a

Q(s, a | ϑ) (4.2)

In value-based methods, the policy takes into account the estimated Q-values
to perform the action. For example, a greedy policy looks at the values of the avail-
able actions within a state and chooses the one that it estimates will produce the
biggest return.

The difference between these two methods is that in the first case we are look-
ing up a Q-table for the information, while in the second case the values are pro-
duced by a neural network, i.e. the neural network approximates the Q-table, but
in both cases the policy is defined based on the Q-values.

Policy gradient methods on the other hand, use a function approximator to
estimate the probabilities of taking each action directly, rather than Q-values, so
that in this case the neural network itself becomes the policy

π(a | s, ϑ) ∈ [0, 1] (4.3)

The main advantage of policy based over value based methods is that value
based methods cannot represent stochastic policies in a simple way. If for exam-
ple we assume an environment in which the agent doesn’t have all the necessary
information, such as imperfect games, it’s possible that the optimal policy is to
choose to perform different actions even if the current state is the same.

For example, using ϵ-greedy policy

π(a′|s) =
{

1− ϵ, a′ = arg maxa Q(s, a | ϑ)
ϵ, else (4.4)

the agent will take a random action with probability ϵ, which is used to explore
the environment, but during training we let ϵ→ 01.

1This is necessary as with epsilon-greedy algorithms the probability of choosing any action
other than the one with highest q-value is uniform.

11

CHAPTER 4. SECTION 4.1. POLICY GRADIENT THEOREM

Another advantage of policy based methods over value based ones is that in
a policy based scenario the policy changes more smoothly during learning. As
we previously discussed, in value based methods once the maximum Q-value for a
given state changes, it creates an abrupt effect, since the agent switches to choosing
the new preferred action most of the time (Eq. 4.4). This contrasts policy based
methods, where the probability of choosing an action increases or decreases in
small increments, based on the action’s effectiveness over the training.

a ∼ π(s | ϑ) (4.5)

4.1 || Policy Gradient Theorem
The Policy Gradient Theorem[13] provides a base for directly updating the pol-

icy parameters.

In a typical RL setting, an agent interacts with the environment which, as we
saw in Chapter 2, is characterised by the states s ∈ S, the actions a ∈ A, and the
rewards r ∈ R.

The policy π(a | s, ϑ) is a differentiable function with respect to the parame-
ters ϑ, and the performance measure ρ(ϑ) is defined as the expected return starting
from the initial state of the distribution.

The statement of the Policy Gradient Theorem is thus

∇ϑJ(ϑ) =
∑
s

µ(s)
∑
a

∇ϑπ(a | s, ϑ)Qπ(s, a) (4.6)

where µ(s) is the stationary distribution of states under policy π.

If we also let fϑ̂ : S ×A→ R be a function approximator to Qπ, we can learn
fϑ̂ by following the update rule

∆ϑ̂ ∝ ∇ϑ̂

(
Q̂π(st, at)− fϑ̂(st, at)

)2

∝ (Qπ(st, at)− fϑ̂(st, at))∇ϑ̂fϑ̂(st, at)

where Qπ(st, at) is some unbiased estimator of Qπ(st, at).

If fϑ̂(st, at) also satisfies the condition

∇ϑ̂fϑ̂(s, a) =
1

π(a | s)
∇ϑπ(a | s)

we get the Policy Gradient Theorem with Function Approximation

∇ϑJ(ϑ) =
∑
s

µ(s)
∑
a

∇ϑπ(a | s, ϑ)fϑ̂(s, a) (4.7)

12

CHAPTER 4. SECTION 4.2. ACTOR-CRITIC METHODS

4.2 || Actor-Critic Methods
Actor-Critic methods combine the advantages of policy-based and value-based

methods, by using two neural networks, an actor, which is a policy based network,
and a critic, which is value based, and whose role is to evaluate the value function.
The policy, represented by the actor, is then guided through the critic’s value esti-
mation and updated accordingly.

This framework was designed to reduce the variance of policy gradient esti-
mates[14], which is an important issue in policy gradient methods. By making use
of a value function, which provides a baseline, the variance in the policy gradient
estimates is reduced leading to more stable and efficient learning[14].

The actor, typically represented as π(a | s, ϑ), as seen in Eq. (4.3), is respon-
sible for deciding the actions based on the parameters ϑ of the current policy.
Meanwhile, the critic evaluates the action, by calculating either the value function
V (s | θ), or the action-value function Q(s, a | θ), where θ are the parameters of
the critic[14].

The update rules for the actor and the critic are different for each implemen-
tation, so we include those of the Asynchronous Advanced Actor Critic (A3C)
method[14].

For the actor, the gradient is derived from the policy gradient theorem, and the
update rules for ϑ and accumulated gradient dϑ are updated using

ϑ← ϑ+ α∇ϑ log π(ai | si, ϑ)A(s , a | ϑ, θ)
dϑ← dϑ+∇ϑ log π(ai | si, ϑ)(R− V (si | θ))

where A(s, a | ϑ, θ) is an estimate of the advantage function, given by

A(st, a | ϑ, θ) =
k−1∑
i=0

γirt+1 + γkV (st+k)− V (st | θ)

with k varying between states, but upper bounded by tmax. The advantage (A(s, a |ϑ, θ))
serves as a representation of the relative value of taking action a given state s, com-
pared to the average value of taking any action given the state.

Meanwhile, the critic’s update rule is based on the square error of the value
function, and the accumulated gradient is calculated using

dθ ← dθ +∇θ(R− V (si | θ))2

and the two parameter sets are updated asynchronously for the actor and critic in
the case of A3C, or synchronously in the case of A2C[14].

13

CHAPTER 4. SECTION 4.3. TRUST REGION POLICY OPTIMIZATION

4.3 || Trust Region Policy Optimization
Trust Region Policy Optimization (TRPO) is a method designed to optimize

policies by ensuring monotonic improvement. In this section, we discuss the fun-
damental principles behind trust regions, the basic equations and it’s application,
in order to easier transition to PPO afterwards.

The basic idea behind TRPO is to introduce a set bound for the size of each step
during a policy update, so that it remains within a ”trust region”, ensuring stability.

The reason why the idea of a trust region is so important is because large pol-
icy changes often lead to instability during training. Even small changes to the
policy parameters ϑ, can lead to significant changes to the resulting policy and
its performance, and therefore making the step sizes smaller during the gradient
ascent/descent is not able to mitigate the problem, and also weakens the sample
efficiency of the algorithm.

The theoretical foundation of TRPO is thusly based on ensuring that the new
policy πnew is close to the old policy πold, using the Kullback-Leible (KL) diver-
gence[4], which ensures that each update to the policy is conservative, guarantee-
ing performance improvements.

The performance η(π) of a stochastic policy π is given by

Es0,a0,...

[
∞∑
t=0

γtr(st)

]
(4.8)

where s0 ∼ ρ0 the distribution at the initial state, at ∼ π(at | st), st+1 ∼ P(st+1 | st, at)

then, we can use the following surrogate local approximation[4] to η(π)

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a | s)Aπ(s, a) (4.9)

where Aπ is the advantage function

Aπ(s, a) = Qπ(s, a)− Vπ(s) (4.10)

By making certain approximations, such as using the average KL-divergence
(D̄KL) as a heuristic constraint rather than the maximum maxDKL

D̄πold
KL (π | π̃) := Es∼ρπold [DKL(π(· | s) | π̃(· | s))]

and rewritting the surrogate objective as an expectation over the old policy,
we can formulate the trust region problem as a constrained optimization

maximizeθ Es∼ρπold ,a∼πold

[
πθ(a | s)
πold(a | s)

Aπold
(s, a)

]
subject to Es∼ρπold [DKL(πold(·|s) | πθ(· | s))] ≤ δ,

(4.11)

14

CHAPTER 4. SECTION 4.4. PROXIMAL POLICY OPTIMIZATION

where δ is a small positive constant that controls the step size.

In practice, solving this constrained optimization problem is improbable due to
the large number of constraints. For this reason, we approximate the objective and
constraint functions using Monte Carlo simulations, so that the problem becomes

maximizeθ
∑
s

ρπold
(s)

∑
a

πθ(a | s)Aπold
(s, a)

subject to D̄
ρπold
KL (πold, π) ≤ δ

(4.12)

Despite the theoretical robustness of TRPO, its application has many chal-
lenges. First of all, the exact calculation of the KL divergence DKL and the ad-
vantage function Aπ requires significant computational power. Secondly, ensur-
ing that the policy updates remain inside the trust region often requires iterative
procedures, which can be very computationally expensive.

4.4 || Proximal Policy Optimization
Using the foundations set by policy gradient methods and the improvements

introduced by TRPO, Schulman et al[3] were able to introduce Proximal Policy Op-
timization (PPO), which was designed to combine the best aspects of TRPO with
the practicality of Actor Critic methods.

While TRPO introduced and popularized the idea of a trust region, which en-
sures a stable training policy regime, its complexity and computational costs made
it difficult to implement and generalise. Thus, the motivation for PPO was the need
for an algorithm that could limit the policy updates, whilst at the same time being
simple to implement, and computationally efficient.

Objective Function
Much like TRPO, Proximal Policy Optimization aims to optimize a surrogate ob-
jective function, whilst ensuring that the updated policy does not significantly di-
verge from the current policy, maintaining an implicit trust region via truncation,
rather than having an explicit constraint on the updates. This clipped surrogate
objective is formulated as

LCLIP (ϑ) = Et

[
min

[
rϑAπϑ

(s, a), clip(rϑ, 1− ε, 1 + ε)
]]

(4.13)

where rϑ = πϑ(at | st)
πϑold

and ε is a constant called the clip coefficient.

The clipping function is responsible for ensuring that rϑ ∈ [1−ε, 1+ε], which
prevents large updates that could destabilise the policy.

15

CHAPTER 4. SECTION 4.4. PROXIMAL POLICY OPTIMIZATION

Generalised Advantage Estimation
Instead of calculating the advantage as shown in Eq. 4.10, PPO instead intro-
duced another technique, called General Advantage Estimation (GAE), which is
used to reduce the variance of policy gradient estimates, whilst maintaining low
bias. It achieves that, but computing the generalised advantage function Ât using
a weighted sum

Ât =
T−1∑
i=t

(γλ)i−tδi (4.14)

where
δi = ri + γV (si+1)− V (si) (4.15)

and thus the value loss function is deduced to be

Lθ(ϑ) = E [(At(st, at) + Vθ(s))− Vθ] (4.16)

where we treat (At(st, at) + Vθ(s) as independent of θ.

Entropy Regularization
Entropy regularisation is used to encourage exploration by adding an extra term on
the objective function. This disincentivizes the policy from becoming deterministic
too quickly by converging to a bad local optimum[15], which can be detrimental
in environments where thorough exploration is vital. The entropy term S[πϑ] is
given as

S[πϑ] = E

[
−
∑
a

πϑ(a | s) log πθ(a | s)

]
(4.17)

Finally, we get the total PPO loss function by combining the clipped surrogate
(Eq. 4.13), the value loss function (Eq. 4.16), and the entropy term (Eq. 4.17)

LPPO(ϑ) = E
[
LCLIP (ϑ)− c1Lθ(ϑ) + c2S[πϑ]

]
(4.18)

where c1 is the loss coefficient and c2 is the entropy coefficient.

Algorithm 2 Proximal Policy Optimization (PPO) Algorithm
Input: Number of iterations I, number of actors N, number of timesteps T, num-
ber of epochs K, minibatch size M
Initialize policy parameters θ
for iteration = 1, . . . do

for actor = 1, . . . , N do
Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L w.r.t. θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

16

5 | PneumaRL – Custom Environment

For this thesis, we decided to use PPO as the algorithm of choice, since as ex-
plained previously, it is a good balance between complexity and performance. To
showcase the algorithm, the decision was made to implement our own custom
environment called PneumaRL1, which is a top-down 2D RPG-like game, like the
original Legend of Zelda for the Nintendo Entertainment System (NES) (Fig. 5.1).

The choice to implement the environment as an RPG game has to do with the
capacity of the genre to accommodate a plethora of game mechanics and differ-
ent structures, which promote exploration. Typically, maps are big, open, and
full of objectives and locations for agents and players to discover, with the aim
to offer players the experience of a ”breathing, living world”. These also provide
for non-linear exploration; in most game genres the objectives follow a linear ap-
proach, from objective A to objective B, whilst in RPGs the convention is to offer
multiple branching paths and different approaches to achieve the objective. This
freedom extends to the agent character, where it is archetypal to offer choices to
customize stats, most typically via having the option to pick between different
”classes”, which specialize in different areas relevant to the gameplay2.

Figure 5.1: Screenshot from inside the PneumaRL environment.

This multi-modal, multi-objective approach ties incredibly well with what Re-
inforcement Learning tries to accomplish, since the idea behind RL is to take com-
plex structures, such as games, and optimize them by figuring out efficient paths
to complete the objectives. This plethora of choices offered to the agent helps
simulate the complexity of more practical problems that might be encountered,
and highlights the exploration-exploitation trade-off. In addition to that, the way

1pronounced (/ˈnjuːmə/)
2For example, a class called ”mage” is expected to specialize in long range ”magic” attacks,

whilst a class called ”assassin” most likely incentivizes a ”stealth” close range style of play.

17

CHAPTER 5. SECTION 5.1. STATE SPACE

that exploration occurs in this genre of games lends itself to an entangled trial-
and-error methodology, which is very powerful in testing and comparing differ-
ent algorithms and methods. Therefore, this setup allows for the exploration of a
great range of dynamical sub-environments, without the need to create them from
scratch.

Originally the environment was implemented using PyGame, a game engine
built on top of Python. The choice to use PyGame rather than a more mainstream
engine like Unity or Unreal Engine was made on the basis of simplicity; most main-
stream engines use C#, or C++, but C# and especially C++ are much more com-
plicated syntactically and structurally, compared to Python, and since we will be
using PyTorch to implement the PPO algorithm, it was significantly simpler to
implement the interface between game and agent if both are run in the same lan-
guage.

Unfortunately, due to performance issues, and in favor of code readability and
reduced complexity of further development, the choice was made to switch to
Godot, a Free and Open Source game engine, using the Godot RL Agents plu-
gin[16] to bridge the agents to the environment. Godot uses GDScript which, un-
like than the alternatives (C#, C++), which is based on Python, so the workflow is
easily transferable. It also makes use of other structures, concepts, and mechanics,
which make the environment and the entire project significantly more modular,
flexible and maintainable.

Other projects similar to this, such as NeuralMMO[17], use the Unity game
engine, and have a 3-dimensional environment but there doesn’t seem to be any
justification for the inclusion of the extra dimension. Indeed a third dimension
adds extra complexity3 without offering significant new capabilities for the agent
to exploit, at least currently.

PneumaRL works by initializing a level, which generates the map, enemies,
and players, with each player containing a separate instance of a learning agent.
In the following sections, we present the state space (or observation space) which
is what the agent perceives as the environment, the action space which constitutes
the actions that the agent can make, and the reward structure.

5.1 || State Space
Agents can be customized to perceive any number of enemies on the world

map, either by proximity, by type, etc. For this thesis the choice was made for the
agent to be able to perceive every enemy. The relevant statistics that comprise the
observations of the agent are

• Player position (x,y coordinates), which represents the current coordinates
of the player within the game’s map, and is crucial for the agent to develop

3Also computational cost when visualizing the training process.

18

CHAPTER 5. SECTION 5.2. AGENT ACTIONS

spatial awareness.

• Player health points (HP), which indicate the current health status of the
player character. Health points typically are used to indicate the risk of a
player losing, and therefore help the agent understand it’s future chances of
survival.

• Player experience points (xp), which track the cumulative score of the player,
and are earned after achieving objectives, in our case elimination enemy
monsters. Experience points serve as the basis of a reward system in any
game, and and are used to signify player progression.

• Relative distance and direction to enemy, which combined serve as a means
for the agent to be able to asses threats and opportunities for engagement.
They also serve as a objective marker; since the goal is to eliminate enemies,
the agent needs to learn to move towards them.

• Enemy health points (HP), which allows the agent to monitor the status of
enemies to prioritise and gauge combat effectiveness against different ene-
mies.

5.2 || Agent Actions
Each agent is able to move in the four directions up, down, left, right, as well

as engaging in melee combat, by making use of a weapon (Fig ⁇). At different
points during the development, the agent was able to also cast magic spells such
as healing and fireball, which is a long range damaging spell. This however was
susceptible to exploitation by the agent, who could ’snipe’ enemies without the
need to approach them to a range that they would be able to notice the agent,
and increased the complexity for no noticeable benefit. Therefore the decision
was made to remove this mechanic until PneumaRL is in a more mature state,
and in general able to handle more complex structures (see the section on further
developments).

5.3 || Reward Structure and Agent Goals
PneumaRL features a customizable per-agent reward function, with the antic-

ipation of independent MARL being added as a future development feature. Dur-
ing the environment’s development, a push was made to include reward structures
that go further than a simple scalar value, such as the cumulative experience points
of the agent. Unfortunately however, time constraints and issues with fine tun-
ing the reward function4 with the added complexity pushed us to opt for simply
a trade-off between the amount of enemies killed, represented by the amount of

4For example, trying to implement a structure where the agent has to maintain an short distance
to the enemies using a sigmoid function, resulted in policies where the agent would rush towards
the enemies in a suicidal frenzy.

19

CHAPTER 5. SECTION 5.4. CUSTOMISATION

Figure 5.2: An agent fighting some bamboo monsters.

experience points the agent is able to gain during each episode, and agent health
remaining.

rt = xpt −
hpt
hp0

, t > 0

where xpt represent the cumulative experience point up to time step t, and hpt
denotes the agent’s health points at time t, where t = 0 is the initial state. The
contribution of hp is normalised because based on character class (see the next
section), health points can vary between agents. The reward function therefore
pushes the agent to try to strike a balance between combating enemies to gather
xp, whilst trying to maintain some distance in order to not get attacked back and
lost hp.

5.4 || Customisation
Since the intention for PneumaRL is for it to be a research environment, it is

essential that it has a modular design, such that anybody is capable of modifying
it without the need to modify the source code.

5.5 || Agent Goals
As we saw above, the primary gameplay objective in PneumaRL is the maxi-

mization of xp, at least for the rudimentary reward function we implemented. This
however need not be the case, as adding other rewards, such as exploration, re-
source collection, and skill utilization are easy to implement, due to the change of
engine from Pygame to Godot. The switch to the Godot engine allowed the project
to overcome the severe limitations of developing using PyGame, providing a more
robust, but at the same time modular, and flexible development experience.

20

CHAPTER 5. SECTION 5.5. AGENT GOALS

Level generation
As of the current stage of development, new levels for PneumaRL are easily gen-
erated using CSV files5, where each file represents a layer of the level, such as
background, details, etc. For example one layer handles enemy and player place-
ment, while another dictates the arrangement of impassable terrain, such as walls
or coastlines. There is also currently ongoing work to use random generation for
maps and character placement using the Godot engine.

Character stats
Each character, i.e. player-agent and enemy, is assigned some basic stats, such
as health, damage capability (as in, how much damage they can deal per attack),
movement speed, etc. These are handled using dictionaries in the PyGame, and
numeric sliders in Godot. Apart from the rudimentary numerical control, Pneu-
maRL features predefined classes, such as ”tank”, ”mage”, and ”warrior”, which
encourage agents to tackle their assigned objectives using different approaches.
These classes can also be modified and expanded upon in order to better suit the
needs of the problem.

5Such files can be quickly made using software such as TILED and a free collection of assets.

21

6 | Implementing PPO in PneumaRL

To test the viability of PneumaRL, we implemented Proximal Policy Optimiza-
tion using a single agent. The level used is split into three areas, a snowy area in
the north, a desert-island area to the south, and a green field in the center (Fig.
6.1).

Figure 6.1: Level used for the training.

Initially, while developing for the PyGame version of PneumaRL, PyTorch was
used to write a custom implementation of PPO, closely following the default hyper-
parameters suggested in the original paper[3]. However we quickly run into many
issues, discussion for some of which is often omitted in literature, and so are men-
tioned here. The decision to move to the Godot engine had the implication that we
had to choose between the frameworks that are supported by the Godot RL Agents
plugin[16], which are Stable Baselines 3[18] (SB3), Ray RLLib[19], CleanRL[20],
and SampleFactory[21]. We arbitrarily chose SB3, although support for multiple
policies using SB3 is still being developed as of the writing of this thesis.

To start, we implemented networks of 3 different sizes. The small architecture
has an actor with a single hidden layer and 128 neurons (we denote this as [128]),
and a critic also with a single layer, but with 256 neurons ([256]). The medium

22

CHAPTER 6. SECTION

size has actor architecture of a single hidden layer with 512 neurons ([512]), and a
critic with two hidden layers of size 2048 neurons each ([2048, 2048]). Finally, the
big architecture has an actor with 2 hidden layers of size 1024 each ([1024, 1024]),
while the critic has 4 hidden layers of size 4096 ([4096, 4096, 4096, 4096]). As we
see in Fig. 6.2, the medium sized network shows the highest variance, between the
different sizes we tried. The small network has the best overall performance, and
the lowest variance.

Figure 6.2: Comparison between different architecture sizes.

The biggest network has the worst performance and the range of the variance
shows that only very rarely is it able to reach positive cumulative rewards. We
believe that this occurs since when a network is too big they tend to have difficul-
ties converging to an optimal policy for the same reason that big networks tend to
have issues in other disciplines of ML, i.e. overfitting to the training data.

The reason we used separate network sizes, is because size does not seem to
matter as much for the actor as it does for the critic. Letting the actor’s network
size remain small (ex. 2 layers of 1024 neurons each) whilst having the critic’s
network be significantly bigger (ex. 4 layers of 4096 neurons each) seemed to have
little to no effect to the training compared to having them both be the same size
(Fig. 6.3), which seems to align well with literature[22].

This meant that we could confidently reduce the computational cost by having
a small network for the actor, letting the critic do most of the work.

Since the small network was the one with the best performance, the rest of the
chapter will concern itself only with that one.

During the early development of the PneumaRL environment, we run into
many cases where the agent(s) would collapse into a single repetitive action, such
as permanently walking south disregarding their survival, and quickly perishing

23

CHAPTER 6. SECTION 6.1. OPTIMIZER CONFIGURATION

Figure 6.3: Comparison between an actor of size [128] (denoted smallest), and an
actor of size [256](small). In both networks the critic has size [256]. The reason
for denoting them as _optim_tanh is because we used the modifications discussed
below.

under the attacks of the enemy monsters. This was
In the following section we discuss our custom configuration for the optimizer,

and later reason as to our choice for the activation function.

6.1 || Optimizer Configuration
In order for an RL algorithm to converge, we need to pick the appropriate op-

timizer, i.e. the appropriate update method for the weights of the neural networks.

In our early testing, this decision was underestimated, and caused huge prob-
lems, since the bad choice caused the agents to steadily improve up to a point,
upon which they completely collapsed and reverted to doing nonsensical moves,
or even worse to converge to a single-action optimum, so that for the entire rest
of the training, the agent had 0 entropy, and always picked a single state.

For reference, the loss function of PPO is (Eq. 4.18)

L(ϑ) = E
[
LCLIP (ϑ)− c1Lθ(ϑ) + c2S[πϑ]

]
(6.1)

Stochastic Gradient Descent
Traditionally, the method used was Stochastic Gradient Descent (SGD), which up-
dates parameters iteratively based on the gradients of the loss function, wrt the
parameters ϑ.

24

CHAPTER 6. SECTION 6.1. OPTIMIZER CONFIGURATION

The update rule for SGD is

ϑt+1 = ϑt − α∇ϑL(ϑt) (6.2)

where in our case L is the loss function from Eq. 6.1, and α is the learning rate.

Because of this simple structure, SGD has several limitations, with the most
important being a sensitivity to changes of the learning rate.

Adaptive Optimizers
In order to overcome the limitations of SGD, various adaptive methods were de-
veloped, the most prominent ones being

• Momentum based gradient descent, with update rule

vt = βvt−1 + (1− β)∇ϑL(ϑt)

ϑt+1 = ϑt − αvt

where β is the momentum term which serves as a way to control the decay
rate of the descent, and

• Root Mean Squared Propagation (RMSProp), with update rule

st = βst−1 + (1− β)∇ϑL
2(ϑt)

ϑt+1 = ϑt −
α√
st + ε

∇ϑL(ϑt)

where st is the running average of the squared gradients at time t, β is a
hyperparameter that controls the decay rate of the moving average, and ϵ is
a positive constant added for stability, preventing division by zero.

Adam Optimizer
Adaptive Momentum Estimation (Adam), manages to combine the advantages of-
fered by Momentum based gradient descent and RMSProp, and effectively com-
putes the adaptive rates of each parameter, by keeping track of an exponentially
decaying average of past gradients and their respective squared values.

The update rules for the Adam optimizer are

mt = β1mt−1 + (1− β1)∇ϑL(ϑt)

vt = β2vt−1 + (1− β2)∇ϑL
2(ϑt)

m̂t =
mt

1− β1

, v̂t =
ut

1− β2

ϑt+1 = ϑt −
αm̂t√
ût + ϵ

(6.3)

where mt and vt are the first and second moment estimates respectively, β1, β2 are
their respective decay rates, α is the learning rate, and ϵ is a small positive constant.

25

CHAPTER 6. SECTION 6.1. OPTIMIZER CONFIGURATION

Adam is one of the more popular optimizers, and is the defacto choice for Deep
Learning applications. We chose Adam for its easy of implementation, efficiency
and effectiveness on large-scale problems such as PneumaRL.

The most significant problem we encountered during the development of the
implementation, was that of policy collapse. Although policy collapse is not very
well understood despite recent efforts[23, 24], this issue seems to be related to the
loss of plasticity, i.e. degradation of the ability of an agent to adapt and learn by
interacting with the environment, as well as the tendency for the agent to dis-
regard, or forget, previously acquired knowledge, even after converging. These
two combined, result in an agent that disregards, of forgets, the trained policy,
and then is unable to re-learn it. This issue seems to arise due to the continuous
stream of information that an agent trains with, which somehow destabilizes train-
ing[24, 23]. To combat this, we used a non-stationary Adam optimizer[24], where
β1 = β2 = 0.9, rather than the default β1 = 0.9, β2 = 0.999 that is suggested in
the original paper[25], which seems to effectively solve the issue, as seen in Figure
6.4.

Figure 6.4: Comparison between the stationary (β1 = 0.9, β2 = 0.999) and the
non-stationary (β1 = β2 = 0.9) Adam optimizer. Notice how the variance of
the non-stationary Adam version is smaller, and the non-stationary Adam greatly
outperforms the default configuration.

Other solutions to the problem of policy collapse appear to be implementing an
L2 regularization method[24] or using Utility-based Perturbed Gradient Descent
(UPGD) rather than Adam as the optimizer[23].

26

CHAPTER 6. SECTION 6.2. ACTIVATION FUNCTION

6.2 || Activation Function
Initially the decision was made to use the Rectified Linear Unit (ReLU) as the

activation function, defined as

ReLU =

{
x, if x > 0
0, x ≤ 0 otherwise = max(0, x)

which is the standard. However, early during development, we run into issues
with exploding gradient norms, i.e. gradient norms approaching infinity, which
disrupted the training process and caused the agent to oscillate, and ultimately
never converge. We therefore decided to instead implement the LeakyReLU acti-
vation function

LeakyReLU =

{
x, if x > 0
0.01x, x ≤ 0 otherwise = max(0, x)

and also clipping the gradient norms1, by restricting the L2norm of the gradient,
to be ‖∇ϑL(ϑt)‖2 ≤ 2.

Although this helped reduce the problem, it did not completely eliminate it,
and so we settled with the tanh function,

tanh(x) = ex − e−x

ex + e−x
(6.4)

which seemed to perform better overall, and we were able to reduce the clipping
limit of the norm to ‖∇ϑL(ϑt)‖2 ≤ 0.5. In Fig. 6.5 we can see the benefit of
switching to the tanh activation function over ReLU.

6.3 || Hyperparameters
Hyperparameter tuning is crucial in optimizing the behaviour of an agent.

Proximal Policy Optimization, although robust for a given set of values , can be
very sensitive to hyperparameter changes, with convergence rate, learning sta-
bility, and overall performance fluctuating greatly for different values. Although
newer algorithms such as SAC[26] focus on solving these issues, we decided to
keep working with PPO, trying to address the aforementioned sensitivity through
experimentation and adjustments.

1This meant we were effectively clipping twice, once due to LCLIP and once due to this.

27

CHAPTER 6. SECTION 6.3. HYPERPARAMETERS

Figure 6.5: Comparison between using tanh or ReLU as the activation function.
We see that tanh both improves performance, and decreases variance.

Initially we started working with the default values as given in the original pa-
per that introduced Proximal Policy Optimization[3] (Table 6.1), which provided
us with a baseline to compare and improve or tuning.

Hyperparameter Value
Discount γ 0.99
Learning rate α 3e− 4
GAE parameter λ 0.95
Clipping parameter ϵ 0.2
Horizon 2048
Minibatch size 64
Num. epochs 15
Value coefficient 1
Entropy coefficient 0.01

Table 6.1: Default values for the hyperparameters of PPO.

By using iterative processes, we refined our choice of hyperparameters, to bet-
ter suit the PneumaRL environment. Below we discuss the changes we made

• As mentioned in a previous section, we implemented gradient clipping, with
a clipping limit of 2, later changed to 0.5 when we moved to tanh as the
activation function, in order to stop the gradient norms from exploding.

• The value function coefficient was adjusted from 1 to 0.5 in order to balance
the updates as seen in Eq. 6.1. This means that the critic’s estimation influ-

28

CHAPTER 6. SECTION 6.3. HYPERPARAMETERS

ences the actor less, helping prevent noisy value estimates, especially at the
beginning of training.

• The horizon was reduced from 2048 to 256, so that the networks update more
frequently, making the agent respond and adapt faster to new information
gathered by exploring the environment. A smaller horizon also heals smooth
out the learning curve, decreasing the likelihood of large changes in policy.

• The number of epochs was decreased from 15 to 10, which means that the
batches are cycled quicker during the learning process, reducing the chance
of overfitting on a specific batch, by diversifying the data pool used, which
also helps improve stability and generalisation.

• Concerning the clipping parameter ϵ, we noticed similar behaviour with the
default value and the value set to 0.1. A smaller ϵ allows for more conserva-
tive policy updates, at the cost of learning speed, which can benefit an agent
in situations where stability is more important.

29

CHAPTER 6. SECTION 6.3. HYPERPARAMETERS

The final set of hyperparameters used is given below (Table 6.2)

Hyperparameter Value
Discount γ 0.99
Learning rate α 3e− 4
GAE parameter λ 0.95
Clipping parameter ϵ 0.1
Horizon 256
Minibatch size 64
Num. epochs 10
Value coefficient 0.5
Entropy coefficient 0.01

Table 6.2: Final values of the hyperparameters for PPO in PneumaRL.

30

7 | Further Discussion

It is of note that this work is a small step to a broader ongoing research effort.
The development of an environment such as Pneuma provides an initial attempt at
designing a robust platform for future research in Multi-Agent and Multi-Objective
Reinforcement Learning but, nevertheless, there are still many areas in which this
work can be expanded upon, in order to enhance it’s usefulness and utility as a
research tool.

As it stands, the state representation inside Pneuma is capable of handling only
a small fraction of the potential parameters that a human player might use to opti-
mize their own gameplay, and the reward function is a simple scalar value which,
although it is the standard in most training environments, still leaves much to be
desired in terms of potential multitasking. Although these are simple implemen-
tations, they still represent a significant step in the right direction, with future de-
velopment focusing on improving and expanding upon the state and action spaces,
which will offer a richer context for the agents to learn and develop sophisticated
strategies in.

Such enhancements to the action space might include more actions, such as
changing weapons, casting offensive, defensive and healing spells, and physical
abilities such as moving quickly through a small area with a cooldown. For the
state space, changes could include more detailed player statistics, environmental
variables, implementing vision through ray-casting rather than distance-direction
calculation, and inclusion of terrain detection, which would more closely resemble
the real-world complexities and information gathering process of a gamer.

Likewise, the reward structures currently implemented in Pneuma needs to
be updated. Whilst it provides adequate results we expect in such a simple im-
plementation of a complex RPG, it is necessary for this structure to expand, so
that much more complex targets can be implemented. Future updates could in-
clude resource management, NPC interaction, strategic positioning, and collabo-
rative work between agents, as well as a communication system embedded within
Pneuma, n order to verify whether traditional RPG roles would naturally emerge.
This would also allow the researchers to implement multi-object reward structures,
where each agent tries to optimize and balance a multitude of different objectives,
which reflects a more realistic scenario.

31

Bibliography

[1] David Silver et al. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. 2017. arXiv: 1712.01815 [cs.AI]. uRl:
https://arxiv.org/abs/1712.01815.

[2] David Silver et al. “Mastering the game of Go with deep neural networks
and tree search.” In: Nature 529.7587 (Jan. 2016), pp. 484–489. issn: 1476-
4687. doi: 10.1038/nature16961. uRl: https://doi.org/10.1038/nature16961.

[3] John Schulman et al. Proximal Policy Optimization Algorithms. Aug. 28, 2017.
doi: 10.48550/arXiv.1707.06347. uRl: http://arxiv.org/abs/1707.06347.

[4] John Schulman et al. Trust Region Policy Optimization. Apr. 20, 2017. doi:
10.48550/arXiv.1502.05477. uRl: http://arxiv.org/abs/1502.05477.

[5] Richard S. Sutton. “Learning to predict by the methods of temporal dif-
ferences.” In: Machine Learning 3.1 (Aug. 1988), pp. 9–44. doi: 10 . 1007 /
BF00115009. uRl: http://link.springer.com/10.1007/BF00115009.

[6] Christopher Watkins. “Learning From Delayed Rewards.” In: (Jan. 1, 1989).
[7] Volodymyr Mnih et al. PlayingAtari with Deep Reinforcement Learning. Dec. 19,

2013. doi: 10.48550/arXiv.1312.5602. uRl: http://arxiv.org/abs/1312.5602.
[8] Long-Ji Lin. “Reinforcement learning for robots using neural networks.” PhD

thesis. 1992.
[9] Gerald Tesauro. “Temporal difference learning and TD-Gammon.” In: Com-

mun. ACM 38.3 (1995), pp. 58–68. issn: 0001-0782. doi: 10 . 1145 / 203330 .
203343. uRl: https://doi.org/10.1145/203330.203343.

[10] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning.” In:Nature 518.7540 (Feb. 2015), pp. 529–533. doi: 10.1038/nature14236.
uRl: https://www.nature.com/articles/nature14236.

[11] Hado Hasselt. “Double Q-learning.” In: Advances in Neural Information Pro-
cessing Systems. Vol. 23. Curran Associates, Inc., 2010. uRl: https://papers.
nips.cc/paper_files/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-
Abstract.html.

[12] Hado van Hasselt, Arthur Guez, and David Silver.Deep Reinforcement Learn-
ing with Double Q-learning. Dec. 8, 2015. doi: 10.48550/arXiv.1509.06461.
uRl: http://arxiv.org/abs/1509.06461.

[13] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation.” en. In: ().

[14] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement Learn-
ing. 2016. arXiv: 1602.01783 [cs.LG]. uRl: https://arxiv.org/abs/1602.
01783.

[15] Zafarali Ahmed et al. “Understanding the Impact of Entropy on Policy Op-
timization.” en. In: ().

32

https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arXiv.1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.1502.05477
http://arxiv.org/abs/1502.05477
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
http://link.springer.com/10.1007/BF00115009
https://doi.org/10.48550/arXiv.1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236
https://papers.nips.cc/paper_files/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://papers.nips.cc/paper_files/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://papers.nips.cc/paper_files/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://doi.org/10.48550/arXiv.1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783

CHAPTER 7. SECTION BIBLIOGRAPHY

[16] Edward Beeching et al. “Godot Reinforcement Learning Agents.” In: arXiv
preprint arXiv:2112.03636. (2021).

[17] Joseph Suarez et al. The Neural MMO Platform for Massively Multiagent Re-
search. Oct. 14, 2021. doi: 10.48550/arXiv.2110.07594. uRl: http://arxiv.org/
abs/2110.07594.

[18] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning
Implementations.” In: Journal of Machine Learning Research 22.268 (2021),
pp. 1–8. uRl: http://jmlr.org/papers/v22/20-1364.html.

[19] Eric Liang et al. RLlib: Abstractions for Distributed Reinforcement Learning.
2018. arXiv: 1712.09381 [cs.AI].

[20] Shengyi Huang et al. “CleanRL: High-quality Single-file Implementations of
Deep Reinforcement Learning Algorithms.” In: Journal of Machine Learning
Research 23.274 (2022), pp. 1–18. uRl: http://jmlr.org/papers/v23/21-1342.
html.

[21] Aleksei Petrenko et al. “Sample Factory: Egocentric 3D Control from Pix-
els at 100000 FPS with Asynchronous Reinforcement Learning.” In: Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learning
Research. PMLR, 2020, pp. 7652–7662. uRl: http://proceedings.mlr.press/
v119/petrenko20a.html.

[22] Siddharth Mysore et al.Honey, I ShrunkTheActor: A Case Study on Preserving
Performance with Smaller Actors in Actor-Critic RL. 2021. arXiv: 2102.11893
[cs.LG]. uRl: https://arxiv.org/abs/2102.11893.

[23] Mohamed Elsayed and A. Rupam Mahmood. Addressing Loss of Plasticity
and Catastrophic Forgetting in Continual Learning. 2024. arXiv: 2404.00781
[cs.LG]. uRl: https://arxiv.org/abs/2404.00781.

[24] Shibhansh Dohare, Qingfeng Lan, and A. Rupam Mahmood. “Overcoming
Policy Collapse in Deep Reinforcement Learning.” In: Sixteenth European
Workshop on Reinforcement Learning. May 31, 2023. uRl: https://openreview.
net/forum?id=m9Jfdz4ymO.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. 2017. arXiv: 1412.6980[cs.LG]. uRl: https://arxiv.org/abs/1412.6980.

[26] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. Aug. 8, 2018. doi: 10.48550/
arXiv.1801.01290. uRl: http://arxiv.org/abs/1801.01290.

[27] Christos Dimitrakakis and Ronald Ortner. Decision Making Under Uncer-
tainty and Reinforcement Learning: Theory and Algorithms. Vol. 223. Intel-
ligent Systems Reference Library. Springer International Publishing, 2022.
isbn: 978-3-031-07612-1. doi: 10 . 1007 / 978 - 3 - 031 - 07614 - 5. uRl: https :
//link.springer.com/10.1007/978-3-031-07614-5.

[28] Peter Henderson et al. Deep Reinforcement Learning that Matters. Jan. 29,
2019. doi: 10.48550/arXiv.1709.06560. uRl: http://arxiv.org/abs/1709.06560.

33

https://doi.org/10.48550/arXiv.2110.07594
http://arxiv.org/abs/2110.07594
http://arxiv.org/abs/2110.07594
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1712.09381
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
https://arxiv.org/abs/2102.11893
https://arxiv.org/abs/2102.11893
https://arxiv.org/abs/2102.11893
https://arxiv.org/abs/2404.00781
https://arxiv.org/abs/2404.00781
https://arxiv.org/abs/2404.00781
https://openreview.net/forum?id=m9Jfdz4ymO
https://openreview.net/forum?id=m9Jfdz4ymO
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.1007/978-3-031-07614-5
https://link.springer.com/10.1007/978-3-031-07614-5
https://link.springer.com/10.1007/978-3-031-07614-5
https://doi.org/10.48550/arXiv.1709.06560
http://arxiv.org/abs/1709.06560

CHAPTER 7. SECTION BIBLIOGRAPHY

[29] Jingbin Liu, Xinyang Gu, and Shuai Liu. Policy Optimization Reinforcement
Learning with Entropy Regularization. Oct. 16, 2020. doi: 10 .48550/arXiv .
1912.01557. uRl: http://arxiv.org/abs/1912.01557.

[30] Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent
Reinforcement Learning: Foundations andModernApproaches. MIT Press, 2024.
uRl: https://www.marl-book.com.

[31] OpenAI et al. Dota 2 with Large Scale Deep Reinforcement Learning. 2019.
arXiv: 1912.06680 [cs.LG]. uRl: https://arxiv.org/abs/1912.06680.

[32] Matthias Lehmann. The Definitive Guide to Policy Gradients in Deep Rein-
forcement Learning: Theory, Algorithms and Implementations. 2024. eprint:
2401.13662 (cs.LG). uRl: https://arxiv.org/abs/2401.13662.

[33] Conor F. Hayes et al. “A Practical Guide to Multi-Objective Reinforcement
Learning and Planning.” In: Autonomous Agents and Multi-Agent Systems
36.1 (Apr. 2022). issn: 1573-7454. doi: 10.1007/s10458- 022- 09552- y. uRl:
http://dx.doi.org/10.1007/s10458-022-09552-y.

34

https://doi.org/10.48550/arXiv.1912.01557
https://doi.org/10.48550/arXiv.1912.01557
http://arxiv.org/abs/1912.01557
https://www.marl-book.com
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
2401.13662
https://arxiv.org/abs/2401.13662
https://doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1007/s10458-022-09552-y

	Introduction
	Mathematical Background
	Markov Decision Processes

	Value Based Methods
	Q-Learning
	Q-Table
	Temporal Difference
	The Bellman Equation
	Parameterisation

	Deep Q-Network
	Experience Replay
	Target Network

	Double Deep Q-Network
	Double Q-Learning
	Double Deep Q-Network

	Policy Gradient Methods
	Policy Gradient Theorem
	Actor-Critic Methods
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Objective Function
	Generalised Advantage Estimation
	Entropy Regularization

	PneumaRL – Custom Environment
	State Space
	Agent Actions
	Reward Structure and Agent Goals
	Customisation
	Agent Goals
	Level generation
	Character stats

	Implementing PPO in PneumaRL
	Optimizer Configuration
	Stochastic Gradient Descent
	Adaptive Optimizers
	Adam Optimizer

	Activation Function
	Hyperparameters

	Further Discussion
	Bibliography

