Massive improvement

This commit is contained in:
Vasilis Valatsos 2023-12-10 20:15:40 +01:00
parent 64cddc48ac
commit c278170847
11 changed files with 60 additions and 53 deletions

View file

@ -1,13 +1,15 @@
import numpy as np
import torch as T
from tqdm import tqdm
from .brain import ActorNetwork, CriticNetwork, PPOMemory
class Agent:
def __init__(self, input_dims, n_actions, gamma=0.99, alpha=0.0003,
policy_clip=0.2, batch_size=64, N=2048, n_epochs=10,
policy_clip=0.2, batch_size=64, n_epochs=10,
gae_lambda=0.95, entropy_coef=0.001, chkpt_dir='tmp/ppo'):
self.gamma = gamma
@ -50,7 +52,12 @@ class Agent:
return action, probs, value
def learn(self):
for _ in range(self.n_epochs):
for _ in tqdm(range(self.n_epochs),
desc='Learning...',
dynamic_ncols=True,
leave=False,
ascii=True):
state_arr, action_arr, old_probs_arr, vals_arr, reward_arr, dones_arr, batches = self.memory.generate_batches()
values = vals_arr
@ -102,11 +109,11 @@ class Agent:
self.critic.optimizer.zero_grad()
self.total_loss.backward()
# T.nn.utils.clip_grad_norm_(
# self.actor.parameters(), max_norm=2)
#
# T.nn.utils.clip_grad_norm_(
# self.critic.parameters(), max_norm=2)
T.nn.utils.clip_grad_norm_(
self.actor.parameters(), max_norm=2)
T.nn.utils.clip_grad_norm_(
self.critic.parameters(), max_norm=2)
#
# # Calculate the gradient norms for both networks
# actor_grad_norm = T.nn.utils.clip_grad_norm_(

View file

@ -59,9 +59,9 @@ class ActorNetwork(nn.Module):
self.actor = nn.Sequential(
nn.Linear(input_dim, fc1_dims),
nn.ReLU(),
nn.LeakyReLU(),
nn.Linear(fc1_dims, fc2_dims),
nn.ReLU(),
nn.LeakyReLU(),
nn.Linear(fc2_dims, output_dim),
nn.Softmax(dim=-1)
)

View file

@ -15,11 +15,6 @@ class Camera(pygame.sprite.Group):
self.half_height = self.display_surface.get_size()[1] // 2
self.offset = pygame.math.Vector2(100, 200)
# Creating the floor
image_path = import_assets(os.path.join('graphics',
'tilemap',
'ground.png'))
self.floor_surf = pygame.image.load(
import_assets(
os.path.join('graphics',

View file

@ -30,7 +30,7 @@ monster_data = {
'notice_radius': 350},
'bamboo': {'id': 4,
'health': 70,
'health': 50,
'exp': 9,
'attack': 20,
'attack_type': 'leaf_attack',

View file

@ -1,10 +1,10 @@
tank_stats = {
'role_id': 1,
'health': 150,
'energy': 40,
'energy': 70,
'attack': 10,
'magic': 3,
'speed': 3
'magic': 5,
'speed': 5
}
mage_stats = {

View file

@ -57,7 +57,6 @@ class Player(pygame.sprite.Sprite):
alpha,
policy_clip,
batch_size,
N,
n_epochs,
gae_lambda,
chkpt_dir,
@ -75,7 +74,6 @@ class Player(pygame.sprite.Sprite):
alpha=alpha,
policy_clip=policy_clip,
batch_size=batch_size,
N=N,
n_epochs=n_epochs,
gae_lambda=gae_lambda,
entropy_coef=entropy_coef,
@ -168,32 +166,32 @@ class Player(pygame.sprite.Sprite):
self.action_features = [self._input.action]
# self.reward = [
# np.log(1 + self.stats.exp),
#
# fermi(nearest_dist, 50),
#
# fermi(
# nearest_enemy.stats.health,
# nearest_enemy.stats.monster_info['health']
# ),
#
# maxwell(
# len(self.distance_direction_from_enemy),
# self.max_num_enemies
# ) - 1,
#
# - fermi(
# self.stats.health,
# self.stats.stats['health']
# ),
# ]
self.reward = [
np.log(1 + self.stats.exp) if self.stats.exp >= 0 else -10,
self.reward = self.stats.exp\
+ self.stats.health/self.stats.stats['health'] - 1\
- nearest_dist/np.sqrt(np.sum(self.map_edge))\
- nearest_enemy.stats.health/nearest_enemy.stats.monster_info['health']\
- len(self.distance_direction_from_enemy)/self.max_num_enemies
fermi(nearest_dist, 300),
fermi(
nearest_enemy.stats.health,
nearest_enemy.stats.monster_info['health']
),
maxwell(
len(self.distance_direction_from_enemy),
self.max_num_enemies
) - 1,
- fermi(
self.stats.health,
self.stats.stats['health']
)
]
# self.reward = self.stats.exp\
# + self.stats.health/self.stats.stats['health'] - 1\
# - nearest_dist/np.sqrt(np.sum(self.map_edge))\
# - nearest_enemy.stats.health/nearest_enemy.stats.monster_info['health']\
# - 2*len(self.distance_direction_from_enemy)/self.max_num_enemies
self.state_features = [
self.animation.rect.center[0]/self.map_edge[0],

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 15 KiB

View file

@ -75,7 +75,7 @@ if __name__ == "__main__":
parser.add_argument('--entropy',
type=float,
default=0.001,
default=0.01,
help="The entropy coefficient")
parser.add_argument('--alpha',
@ -139,13 +139,13 @@ if __name__ == "__main__":
game = Game(show_pg=show_pygame, n_players=n_players)
print("Initializing agents ...")
for player in game.level.player_sprites:
for player in tqdm(game.level.player_sprites,
dynamic_ncols=True):
player.setup_agent(
gamma=args.gamma,
alpha=args.alpha,
policy_clip=args.policy_clip,
batch_size=args.batch_size,
N=args.horizon,
n_epochs=args.n_epochs,
gae_lambda=args.gae_lambda,
entropy_coef=args.entropy,
@ -157,9 +157,11 @@ if __name__ == "__main__":
for episode in tqdm(range(n_episodes),
dynamic_ncols=True):
# This handles agent continuity, as well as score persistence
game.level.reset()
episode_reward = np.zeros(
shape=(n_players, episode_length))
episode_actor_loss = np.zeros(
shape=(n_players, learnings_per_episode))
@ -177,9 +179,14 @@ if __name__ == "__main__":
if not game.level.done:
game.run()
if step % horizon == 0:
for player in game.level.player_sprites:
episode_reward[player.player_id][step] = np.mean(
player.reward)
if (step % horizon == 0 and step != 0) or player.is_dead():
player.agent.learn()
episode_actor_loss[player.player_id][learn_iters % learnings_per_episode]\
@ -196,10 +203,10 @@ if __name__ == "__main__":
# Gather information about the episode
for player in game.level.player_sprites:
score = player.reward
score = np.mean(episode_reward[player.player_id])
# Update score
score_history[player.player_id][episode] = np.mean(score)
score_history[player.player_id][episode] = score
# Update actor/critic loss
actor_loss[player.player_id][episode] = np.mean(