pneuma-pygame/utils/metrics.py

100 lines
3.1 KiB
Python
Raw Normal View History

2024-02-10 17:11:28 +00:00
import os
import numpy as np
import matplotlib.pyplot as plt
def generate(parsed_args):
# Setup parameter monitoring
score_history = np.zeros(
shape=(parsed_args.n_agents, parsed_args.n_episodes))
best_score = np.zeros(parsed_args.n_agents)
actor_loss = np.zeros(shape=(parsed_args.n_agents,
parsed_args.n_episodes))
critic_loss = np.zeros(shape=(parsed_args.n_agents,
parsed_args.n_episodes))
total_loss = np.zeros(shape=(parsed_args.n_agents,
parsed_args.n_episodes))
entropy = np.zeros(shape=(parsed_args.n_agents,
parsed_args.n_episodes))
advantage = np.zeros(shape=(parsed_args.n_agents,
parsed_args.n_episodes))
return score_history, best_score, actor_loss,
critic_loss, total_loss, entropy,
advantage
def plot_learning_curve(scores, num_players, figure_path):
plt.figure()
plt.title("Running Average - Score")
plt.xlabel("Episode")
plt.ylabel("Score")
plt.legend([f"Agent {num}" for num in range(num_players)])
for score in scores:
running_avg = np.zeros(len(score))
for i in range(len(score)):
running_avg[i] = np.mean(score[max(0, i-100):(i+1)])
plt.plot(running_avg)
plt.savefig(os.path.join(figure_path, "avg_score.png"))
plt.close()
def plot_avg_time(time_steps, num_players, fig_path):
plt.figure()
plt.title("Average Time Steps per Episode")
for player in time_steps:
plt.plot(player)
plt.savefig(os.path.join(fig_path, 'avg_time.png'))
2024-02-10 17:11:28 +00:00
def plot_score(scores, num_players, figure_path):
plt.figure()
plt.title("Agent Rewards - No Averaging")
plt.xlabel("Episode")
plt.ylabel("Score")
plt.legend([f"Agent {num}" for num in range(num_players)])
for player_score in scores:
plt.plot(player_score)
plt.savefig(os.path.join(figure_path, 'score.png'))
plt.close()
def plot_loss(nn_type, losses, num_players, figure_path):
plt.figure()
plt.title(f"Running Average - {nn_type.capitalize()} Loss")
plt.xlabel("Learning Iterations")
plt.ylabel("Loss")
plt.legend([f"Agent {num}" for num in range(num_players)])
for loss in losses:
running_avg = np.zeros(len(loss))
for i in range(len(loss)):
running_avg[i] = np.mean(loss[max(0, i-100):(i+1)])
plt.plot(running_avg)
plt.savefig(os.path.join(figure_path, f"{nn_type}_loss.png"))
plt.close()
def plot_parameter(name, parameter, num_players, figure_path):
plt.figure()
plt.title(f"Running Average - {name.capitalize()}")
plt.xlabel("Learning Iterations")
plt.ylabel(f"{name.capitalize()}")
plt.legend([f"Agent {num}" for num in range(num_players)])
for param in parameter:
running_avg = np.zeros(len(param))
for i in range(len(param)):
running_avg[i] = np.mean(param[max(0, i-100):(i+1)])
plt.plot(running_avg)
plt.savefig(os.path.join(figure_path, f"{name}.png"))
plt.close()