2024-02-10 17:11:28 +00:00
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
2024-03-07 08:58:05 +00:00
|
|
|
def plot_learning_curve(scores, num_players, figure_path, n_episodes):
|
2024-02-10 17:11:28 +00:00
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.title("Running Average - Score")
|
|
|
|
plt.xlabel("Episode")
|
|
|
|
plt.ylabel("Score")
|
|
|
|
plt.legend([f"Agent {num}" for num in range(num_players)])
|
|
|
|
for score in scores:
|
|
|
|
running_avg = np.zeros(len(score))
|
|
|
|
for i in range(len(score)):
|
2024-04-23 18:43:39 +00:00
|
|
|
if score[i] != 0:
|
|
|
|
running_avg[i] = np.mean(score[max(0, i-int(n_episodes/10)):i+1])
|
2024-02-10 17:11:28 +00:00
|
|
|
plt.plot(running_avg)
|
|
|
|
plt.savefig(os.path.join(figure_path, "avg_score.png"))
|
|
|
|
plt.close()
|
|
|
|
|
2024-02-12 09:57:29 +00:00
|
|
|
def plot_avg_time(time_steps, num_players, fig_path):
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.title("Average Time Steps per Episode")
|
|
|
|
for player in time_steps:
|
|
|
|
plt.plot(player)
|
|
|
|
plt.savefig(os.path.join(fig_path, 'avg_time.png'))
|
2024-02-29 17:07:31 +00:00
|
|
|
plt.close()
|
2024-02-10 17:11:28 +00:00
|
|
|
|
|
|
|
def plot_score(scores, num_players, figure_path):
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.title("Agent Rewards - No Averaging")
|
|
|
|
plt.xlabel("Episode")
|
|
|
|
plt.ylabel("Score")
|
|
|
|
plt.legend([f"Agent {num}" for num in range(num_players)])
|
|
|
|
for player_score in scores:
|
|
|
|
plt.plot(player_score)
|
|
|
|
plt.savefig(os.path.join(figure_path, 'score.png'))
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
2024-03-07 08:58:05 +00:00
|
|
|
def plot_loss(nn_type, losses, num_players, figure_path, n_episodes):
|
2024-02-10 17:11:28 +00:00
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.title(f"Running Average - {nn_type.capitalize()} Loss")
|
|
|
|
plt.xlabel("Learning Iterations")
|
|
|
|
plt.ylabel("Loss")
|
|
|
|
plt.legend([f"Agent {num}" for num in range(num_players)])
|
|
|
|
for loss in losses:
|
|
|
|
running_avg = np.zeros(len(loss))
|
|
|
|
for i in range(len(loss)):
|
2024-04-23 18:43:39 +00:00
|
|
|
if loss[i] != 0:
|
|
|
|
running_avg[i] = np.mean(loss[max(0, i-int(n_episodes/10)):(i+1)])
|
2024-02-10 17:11:28 +00:00
|
|
|
plt.plot(running_avg)
|
|
|
|
plt.savefig(os.path.join(figure_path, f"{nn_type}_loss.png"))
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
2024-03-07 08:58:05 +00:00
|
|
|
def plot_parameter(name, parameter, num_players, figure_path, n_episodes):
|
2024-02-10 17:11:28 +00:00
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.title(f"Running Average - {name.capitalize()}")
|
|
|
|
plt.xlabel("Learning Iterations")
|
|
|
|
plt.ylabel(f"{name.capitalize()}")
|
|
|
|
plt.legend([f"Agent {num}" for num in range(num_players)])
|
|
|
|
for param in parameter:
|
|
|
|
running_avg = np.zeros(len(param))
|
|
|
|
for i in range(len(param)):
|
2024-04-23 18:43:39 +00:00
|
|
|
if param[i] != 0:
|
|
|
|
running_avg[i] = np.mean(param[max(0, i-int(n_episodes/10)):(i+1)])
|
2024-02-10 17:11:28 +00:00
|
|
|
plt.plot(running_avg)
|
|
|
|
plt.savefig(os.path.join(figure_path, f"{name}.png"))
|
|
|
|
plt.close()
|