import os import torch import torch.nn.functional as F import numpy as np from buffer import ReplayBuffer from networks import ActorNetwork, CriticNetwork, ValueNetwork class SoftActorCritic(): def __init__(self, alpha=3e-4, beta=3e-4, input_dims=[8], env=None, gamma=0.99, tau=5e-3, n_actions=2, max_size=1000000, batch_size=256, reward_scale=2): self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.n_actions = n_actions self.actor = ActorNetwork(alpha, input_dims, n_actions=n_actions, max_action=env.action_space.high) self.critic1 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic1') self.critic2 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic2') self.value = ValueNetwork(beta, input_dims, name='value') self.target_value = ValueNetwork(beta, input_dims, name='target_value') self.scale = reward_scale self.update_network_parameters(tau=1) def choose_action(self, observation): state = T.Tensor([observation]).to(self.actor.device) actions, _ = self.actor.sample_normal(state, reparametrize=False) return actions.cpu().detach().numpy()[0] def remember(self, state, action, reward, new_state, done): self.memory.store_transition(state,action,reward,new_state, done) def update_network_parameters(self, tau=None): if tau is None: tau = self.tau target_value_params = self.target_value.names_parameters() value_params = self.value.named_parameters() target_value_state_dict = dict(target_value_params) value_state_dict = dict(value_params) for name in value_state_dict: value_state_dict[name] = tau*value_state_dict[name].clone() + \ (1-tau)*target_value_state_dict[name].clone() self.target_value.load_state_dict(value_state_dict) def save_models(self): print('... saving models ...') self.actor.save() self.critic1.save() self.critic2.save() self.value.save() self.target_value.save() def load_models(self): print('... loading models ...') self.actor.load() self.critic1.load() self.critic2.load() self.value.load() self.target_value.load() def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, new_state, done =\ self.memory.sample_buffer(self.batch_size) reward = T.tensor(reward, dtype=T.float).to(self.actor.device) done = T.tensor(done).to(self.actor.device) new_state = T.tensor(new_state, dtype=T.float).to(self.actor.device) state = T.tensor(state, dtype=T.float).to(self.actor.device) action = T.tensor(action, dtpye=T.float).to(self.actor.device) value = self.value(state).view(-1) target_value = self.target_value(new_state).view(-1) target_value[done] = 0.0 actions, log_probs = self.actor.sample_normal(state, reparameterize=False) log_probs = log_probs.view(-1) q1_new_policy = self.critic1.forward(state, actions) q2_new_policy = self.critic2.forward(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_Value.view(-1) self.value_optimizer.zero_grad() value_target = critic_value - log_probs value_loss = 0.5*F.mse_loss(value, value_target) value_loss.backward(retain_graph=True) self.value.optimizer.step() actions, log_probs = self.actor.sample_normal(state, reparametrize=True) log_probs = log_probs.view(-1) q1_new_policy = self.critic1.forward(state, actions) q2_new_policy = self.critic2.forward(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_Value.view(-1) actor_loss = log_probs - critic_value actor_loss = T.mean(actor_loss) self.actor.optimizer.zero_grad() actor_loss.backward(retain_graph=True) self.actor.optimizer.step() self.critic1.optimizer.zero_grad() self.critic2.optimizer.zero_grad() q_hat = self.scale * reward + self.gamma*new_value q1_old_policy = self.critic1.forward(state, action).view(-1) q2_old_policy = self.critic2.forward(state, action).view(-1) critic1_loss = 0.5*F.mse_loss(q1_old_policy, q_hat) critic2_loss = 0.5*F.mse_loss(q2_old_policy, q_hat) critic_loss = critic1_loss + critic2_loss critic_loss.backward() self.critic1.optimizer.step() self.critic2.optimizer.step() self.update_network_parameters()