2024-10-03 14:19:34 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
class SelfAttention(nn.Module):
|
|
|
|
def __init__(self, embed_size, heads):
|
|
|
|
super(SelfAttention, self).__init__()
|
|
|
|
|
|
|
|
self.embed_size = embed_size
|
|
|
|
self.heads = heads
|
|
|
|
self.head_dim = embed_size // heads
|
|
|
|
|
|
|
|
assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads"
|
|
|
|
|
|
|
|
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
|
|
|
|
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
|
|
|
|
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
|
|
|
|
self.fc_out = nn.Linear(heads*self.head_dim, self.embed_size)
|
|
|
|
|
|
|
|
def forward(self, values, keys, query, mask):
|
|
|
|
N = query.shape[0]
|
|
|
|
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
|
|
|
|
|
|
|
|
# Split embedding into self.heads pieces
|
|
|
|
values = values.reshape(N, value_len, self.heads, self.head_dim)
|
|
|
|
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
|
|
|
|
query = query.reshape(N, query_len, self.heads, self.head_dim)
|
|
|
|
|
|
|
|
values = self.values(values)
|
|
|
|
keys = self.keys(keys)
|
|
|
|
query = self.queries(query)
|
|
|
|
|
|
|
|
# einsum is black magic i guess
|
|
|
|
energy = torch.einsum("nqhd,nkhd->nhqk", [query, keys])
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
energy = energy.masked_fill(mask==0, float("-1e20"))
|
|
|
|
|
|
|
|
attention = torch.softmax(energy / (self.embed_size**(1/2)), dim=3)
|
|
|
|
|
|
|
|
# once again, we say the magic words, and then we flatten the einsum
|
|
|
|
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
|
|
|
|
N, query_len, self.heads*self.head_dim
|
|
|
|
)
|
|
|
|
|
|
|
|
out = self.fc_out(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, embed_size, heads, dropout, forward_expansion):
|
|
|
|
super(TransformerBlock, self).__init__()
|
|
|
|
self.attention = SelfAttention(embed_size, heads)
|
|
|
|
|
|
|
|
self.norm1 = nn.LayerNorm(embed_size)
|
|
|
|
self.norm2 = nn.LayerNorm(embed_size)
|
|
|
|
|
|
|
|
self.feed_forward = nn.Sequential(
|
|
|
|
nn.Linear(embed_size, forward_expansion*embed_size),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(forward_expansion*embed_size, embed_size)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
def forward(self, value, key, query, mask):
|
|
|
|
attention = self.attention(value, key, query, mask)
|
|
|
|
|
|
|
|
x = self.dropout(self.norm1(attention+query))
|
|
|
|
forward = self.feed_forward(x)
|
|
|
|
out = self.dropout(self.norm2(forward + x))
|
|
|
|
return out
|
|
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
|
|
def __init__(self, src_vocab_size, embed_size, num_layers, heads, device, forward_expansion, dropout, max_length):
|
|
|
|
super(Encoder, self).__init__()
|
|
|
|
self.embed_size = embed_size
|
|
|
|
self.device = device
|
|
|
|
self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
|
|
|
|
self.position_embedding = nn.Embedding(max_length, embed_size)
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList(
|
|
|
|
[
|
|
|
|
TransformerBlock(
|
|
|
|
embed_size,
|
|
|
|
heads,
|
|
|
|
dropout=dropout,
|
|
|
|
forward_expansion=forward_expansion
|
|
|
|
)
|
|
|
|
for _ in range(num_layers)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
def forward(self, x, mask):
|
|
|
|
N, seq_len = x.shape
|
|
|
|
positions = torch.arange(0, seq_len).expand(N, seq_len).to(self.device)
|
|
|
|
|
|
|
|
out = self.dropout(self.word_embedding(x)+self.position_embedding(positions))
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
out = layer(out, out, out, mask)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
class DecoderBlock(nn.Module):
|
|
|
|
def __init__(self, embed_size, heads, forward_expansion, dropout, device):
|
|
|
|
super(DecoderBlock, self).__init__()
|
|
|
|
self.attention = SelfAttention(embed_size, heads)
|
|
|
|
self.norm = nn.LayerNorm(embed_size)
|
|
|
|
self.transformer_block = TransformerBlock(
|
|
|
|
embed_size, heads, dropout, forward_expansion
|
|
|
|
)
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
def forward(self, x, value, key, src_mask, trg_mask):
|
|
|
|
attention = self.attention(x, x, x, trg_mask)
|
|
|
|
query = self.dropout(self.norm(attention+x))
|
|
|
|
out = self.transformer_block(value, key, query, src_mask)
|
|
|
|
return out
|
|
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
|
|
def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length):
|
|
|
|
super(Decoder, self).__init__()
|
|
|
|
self.device = device
|
|
|
|
self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
|
|
|
|
self.position_embedding = nn.Embedding(max_length, embed_size)
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList(
|
|
|
|
[
|
|
|
|
DecoderBlock(
|
|
|
|
embed_size,
|
|
|
|
heads,
|
|
|
|
forward_expansion,
|
|
|
|
dropout,
|
|
|
|
device
|
|
|
|
)
|
|
|
|
for _ in range(num_layers)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
def forward(self, x, enc_out, src_mask, trg_mask):
|
|
|
|
N, seq_len = x.shape
|
|
|
|
positions = torch.arange(0, seq_len).expand(N, seq_len).to(self.device)
|
|
|
|
x = self.dropout(self.word_embedding(x)+self.position_embedding(positions))
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
x = layer(x, enc_out, enc_out, src_mask, trg_mask)
|
|
|
|
|
|
|
|
out = self.fc_out(x)
|
|
|
|
return out
|
|
|
|
|
|
|
|
class Transformer(nn.Module):
|
2024-10-12 20:06:49 +00:00
|
|
|
def __init__(self, src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, embed_size=256, num_layers=6, forward_expansion=4, num_heads=8, dropout=0, device="cuda", max_length=50000):
|
2024-10-03 14:19:34 +00:00
|
|
|
super(Transformer, self).__init__()
|
|
|
|
self.encoder = Encoder(
|
|
|
|
src_vocab_size,
|
|
|
|
embed_size,
|
|
|
|
num_layers,
|
2024-10-12 20:06:49 +00:00
|
|
|
num_heads,
|
2024-10-03 14:19:34 +00:00
|
|
|
device,
|
|
|
|
forward_expansion,
|
|
|
|
dropout,
|
|
|
|
max_length
|
|
|
|
)
|
|
|
|
|
|
|
|
self.decoder = Decoder(
|
|
|
|
trg_vocab_size,
|
|
|
|
embed_size,
|
|
|
|
num_layers,
|
2024-10-12 20:06:49 +00:00
|
|
|
num_heads,
|
2024-10-03 14:19:34 +00:00
|
|
|
forward_expansion,
|
|
|
|
dropout,
|
|
|
|
device,
|
|
|
|
max_length
|
|
|
|
)
|
|
|
|
|
|
|
|
self.src_pad_idx = src_pad_idx
|
|
|
|
self.trg_pad_idx = trg_pad_idx
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
def make_src_mask(self, src):
|
|
|
|
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
|
|
|
|
return src_mask.to(self.device)
|
|
|
|
|
|
|
|
def make_trg_mask(self, trg):
|
|
|
|
N, trg_len = trg.shape
|
|
|
|
trg_mask = torch.tril(torch.ones(trg_len, trg_len)).expand(
|
|
|
|
N, 1, trg_len, trg_len
|
|
|
|
)
|
|
|
|
return trg_mask.to(self.device)
|
|
|
|
|
|
|
|
def forward(self, src, trg):
|
|
|
|
src_mask = self.make_src_mask(src)
|
|
|
|
trg_mask = self.make_trg_mask(trg)
|
|
|
|
|
|
|
|
enc_src = self.encoder(src, src_mask)
|
|
|
|
out = self.decoder(trg, enc_src, src_mask, trg_mask)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0], [1, 8, 7, 3, 4, 5, 6, 7 ,2]]).to(device)
|
|
|
|
trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0], [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)
|
|
|
|
|
|
|
|
src_pad_idx = 0
|
|
|
|
trg_pad_idx = 0
|
|
|
|
src_vocab_size = 10
|
|
|
|
trg_vocab_size = 10
|
|
|
|
model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device).to(device)
|
|
|
|
out = model(x, trg[:, :-1])
|
|
|
|
print(out.shape)
|